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An Absolute Measurement of the Lattice Parameter of Germanium Using Multiple-Beam 
X-ray Diffractometry 
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The d spacing of the 355 reflexion in silicon has been compared with the d spacing of the 800 reflexion 
in germanium using pseudo non-dispersive multiple-beam X-ray diffractometry with Mo Kal radiation. 
This technique gives the ratio of the two lattice parameters without the need for a precise knowledge of 
the X-ray wavelength. Symmetric transmission geometry was used to eliminate the refractive index 
correction. The results were: 

d(800 Ge) _ 1.0002348 (+ 0.0000006) at 22.5 °C 
d(355 Si) 

and 

d(800 Ge) _ 1.0002458 ( + 0-0000016) at 25 °C. 
d(355 Si) 

By using the known lattice parameter of silicon obtained by X-ray and optical interferometry it was 
found that the lattice parameter of germanium at 25 °C is 5.6579060+ 0.0000092/~. 

Introduction 

In traditional measurements of interplanar spacings 
the Bragg angle for an X-ray emission line is measured 
and Bragg's law, corrected for refractive index if 
necessary, is used to obta in  d. The resulting value of 
d depends on the wavelength, which is not known to 
better than a few p.p.m, on an absolute scale, and 
on the Bragg angle, 08, which is measured. The measure- 
ment of 0B requires the accurate location of single- 
crystal reflexion peaks which are the convolution of 
the intrinsic single-crystal reflexion curve with the 
spectral profile of the X-ray source and with the 
angular intensity distribution of the incident beam. 
Conventional X-ray sources of characteristic radiation 
have a line width A2/2 of about 5 × 10 -4 and this 
appears to set the random-error limit to about one in 
10 v (Baker, George, Bellamy & Causer, 1966). 

Hart (1969) introduced the technique of multiple- 
beam diffractometry which measures the d spacing of 
one crystal relative to that of a second crystal pseudo- 
non-dispersively and so avoids the error due to the 
uncertainty in X-ray wavelengths. We have used this 
technique to compare the lattice parameters of good- 
quality silicon and germanium. 

Deslattes & Henins (1973) have used optical and 
X-ray interferometry to measure the absolute lattice 
parameter of silicon. Using this value for silicon we 
obtained the absolute lattice parameter of germanium. 
In these experiments the results were drift-limited to 
about 0.6 p.p.m. If a silicon crystal with lattice spacing 

* Present address: Allen Clarke Research Centre, The 
Plessey Company Limited, Northants., England. 

calibrated to 1 part in 108 had been available, our 
technique could have been improved to give the lattice 
parameter of germanium to the same precision. 

The experiment 

(a) Perfect alignment 
The experimental arrangement is shown in Fig. 1. 

Symmetric Laue-case reflexions in parallel-sided crys- 
tals are used and the reflexions are chosen so that 
the two Bragg angles are as nearly equal as possible. 
The X-ray sources were positioned with respect to the 
first crystal so that the crystal Bragg refects the beams 
from both sources simultaneously. It is convenient but 
not essential to limit the divergence of these beams so 
that only one characteristic emission line is diffracted. 
As the second crystal is rotated a double-crystal rocking 
curve is recorded first in one detector and then in the 
other. The angle of crystal rotation between these 
rocking curves, 2A0, is twice the difference in Bragg 
angle between the two crystals, so that using Bragg's 
law we obtain 

AO=(Ox-O~)=tan Odd/d 
or 

Ad/d=cot O. AO. (1) 

We used a silicon crystal with a 355 reflexion in the 
first position and a germanium crystal with an 800 
reflexion in the second position. With Mo Kc~ radiation 
the Bragg angles are about 30.1 ° and AO is about 30". 
Because the Bragg angles are nearly equal the arrange- 
ment is almost non-dispersive and the rocking curves 
are symmetrical and extremely narrow. The full widths 
at half-peak intensity were approximately 1". 
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(b) Alignment errors 
If there were no errors of alignment the two sources, 

the pinhole and the two diffraction vectors would all 
lie in one plane. It has been shown (Hart, 1969) that 
relative tilts between the diffraction vectors for the 
crystals would change the measured value of 2AO and 

X- ray  source 2 
ii 

\ 
\ 

\ 

\ 
\ 

\ 
\ 

\ 
\ 

\ 

detector 1 

\ 
\ 

\ 

/ 
/ 

/ 
/ 

\ \ /  
x 

X-ray  source 1 

pinhole 

first crystal 

second crystal 

\ 
\ 

\ 
\ 

\ 

\ 
\ /  

detector  2 

Fig. 1. Experimental arrangement used to record double- 
crystal rocking curves (not to scale). 
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Fig. 2. Geometry of misalignments in two-source diffractom- 
etry (after Larson, 1974). 

could be a major source of error in this type of experi- 
ment. Larson (1974) has produced a general theory of 
misalignment. 

In our experiment the first crystal was rotated about 
line AA in Fig. 1 so that the two diffracted beams were 
parallel with the plane defined by the two sources and 
the pinhole to within 8'. Relative tilts between the two 
crystals increase the width of the crystal rocking curve 
and decrease its peak intensity. The second crystal was 
adjusted to maximize the intensity of the peak recorded 
while using a beam effectively 20 times higher than 
that used to measure the separation of the peaks. In 
practice this adjustment was made with three separate 
beams, all in the same vertical plane. The central beam 
was that drawn in Fig. 1 coming from source 1 and 
lying in the plane of the paper. The other two beams 
came from the same source but one lay above and one 
below the plane of the paper. The vertical angle between 
these two alignment beams was 2.6 °, equivalent to a 
vertical separation of 8 mm at the crystals. After the 
adjustment of the second crystal had been com- 
pleted the two alignment beams were blocked off. 
Using this technique the two diffraction vectors could 
be set parallel to within 5" and from Larson's (1974) 
theory it is possible to estimate the maximum effect 
of this misalignment. 

The essential geometry of Larson's theory is shown 
in Fig. 2. The two beams /1 and 12 are those Bragg 
reflected by the first crystal and incident on the second 
crystal. The xz  plane is parallel to the diffracting 
planes of the first crystal and the xy  plane is taken 
to bisect the angle 2~ between the 'planes of diffraction' 
of /1 and/2.  The second crystal rotates about an axis 
making an angle fl with the z axis and the tilting of 
this crystal out of perfect alignment is such that the 
normals to the reflecting planes N1 and N2 make an 
angle ? with the xy  plane. 

Larson assumes that all misorientations are less than 
_+ 2 ° (which is certainly the case in our experiments) 
and that Ad/d< 10 -3. He obtains (equation 21" Larson, 
1974)" 

Aa = 2AO + 72 tan 0 + 27(f (2) 

where Ae is the measured rotation between the two 
peaks. 

Substituting ? =  5" and d~= 8', we calculate that the 
effect of misalignments on the measured value of Ad/d 
is approximately 4 x 10 -8. 

Data were collected by fixed-time counting while 
step-scanning the second crystal angle. Since symmetric 
profiles were obtained most methods of peak location 
are practicable and lead to the same result. In practice, 
centroids were found by using Simpson's rule on pro- 
files truncated at about 1% of the peak intensity with 
Thomsen & Yap's (1968) skew-truncation correction. 
Over wide limits (0.1 to 10 % peak intensity) of trunca- 
tion the same centroid position was found. 

The area surrounding the two crystals was totally 
enclosed in a thermostatic chamber. This gave tempe- 
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rature stability within the enclosure to better than 
0.05°C but limited the minimum temperature attainable 
to about 22.2°C. The temperature was monitored 
with a mercury-in-glass thermometer checked against 
an N.P.L. calibrated thermometer. 

In this experiment small drifts in angle limited the 
final accuracy to about ½ p.p.m. The rate which data 
were recorded was set so that the uncertainty in peak 
positions due to counting statistics equalled the uncer- 
tainty due to drift. The effect of a constant rate of 
drift on Ae should be equal and opposite when rotating 
the axis clockwise (c.w.) and counterclockwise (c.c.w.). 
Accordingly, the mean value of measurements made in 
the c.w. and c.c.w, directions was used. Fig. 3 shows 
the pair of rocking curves obtained in a typical ex- 
periment. 

The samples 

The silicon was grown in the [111] direction by Haldor 
Topsoe of Denmark. Double-crystal topographs 
showed it to contain fluctuations in lattice parameter of 
less than one in 107 . The germanium was grown in the 
[111] direction by Hoboken of Belgium and was of com- 
parable quality. The two slices of crystal were oriented by 
the Bond (1961) technique and cut on a high-speed 
diamond saw. After grinding on plate glass with fine 
carborundum powder and water, the surface damage 
was removed with a chemical polish. The final thick- 
nesses, estimated by X-ray absorption, were approxi- 
mately 300 pm for the silicon and 90/zm for the ger- 
manium slice. 

To ensure that the crystals used in the experiment 
were free from strain we took double-crystal topographs 
of the two slices after they had been mounted using 
the same reflecting planes and the same transmission 
geometry as were used in the actual experiment. In 
each case the double-crystal rocking curve from the 
whole specimen area had a width of less than 1" and 
the double-crystal topographs showed that mounting 
strains were smaller than 3 x 10 -7. A small pillar of 
soft wax proved to be the only method of mounting 
which did not distort the thin germanium crystal. 

Results 

Measurements of Ac~ were made at 22.5 and 25°C but 
when the temperature was raised to 27.5°C the drifts 
became so large that further measurements were im- 
possible. It is probable that the soft wax mounting 
of the germanium crystal was becoming unstable. 

The results were 

22.5oc: d(800Ge)-d(355Si) =234.8 + 0.6 p.p.m. 
½[d(800Ge + d(355Si)] 

25oc: d(800Ge)- d(355Si) =245.8 + 1.6 p.p.m. 
½[d(800Ge) + d(355Si)] 

Errors are standard errors of the mean for ten 
measurements at each temperature. 

Using Deslattes & Henins (1973) value for the lattice 
parameter of silicon at 25°C (5.431065 A)we  obtain 
the lattice parameter of germanium as 

and 
5.6578437 + 0.0000035 A at 22.5°C 

5.6579060 + 0.0000092 A at 25°C. 

Dr T. W. Baker of A. E. R. E., Harwell, used the 
Bond (1960) method to measure the Bragg angle for 
the symmetric 444 reflexion of Cu Kcq for good quality 
silicon as 79 ° 18'46" and the equivalent Bragg angle 
for a piece of germanium physically close to our slice 
in the original boule as 70°36'37 '' (Baker, 1974, 
private communication). After correction for refractive 
index using the zero-absorption dynamical theory, 
but including the real part of the dispersion corrections, 
this gives 

25°C • d(800Ge)-d(355Si) =244 p.p .m. ,  

which is in good agreement with our result. 
Finally we can test the internal consistency of our 

results using measured values of the thermal expansion 
coefficients of silicon and germanium. For example, 
Gibbons (1958) measured the thermal expansion coef- 
ficients of both silicon and germanium The difference 
between his results was aGe-es t=3"4x 10-6°C -z, in 
good agreement with the value 4.4+ 1.7 x 10-6°C -1 
required by our results. 

At the temperature (about - 50°C) where the 800 Ge 
and 355 Si lattice spacings are identical, such equality 
is measurable without any knowledge whatsoever of 
the X-ray wavelength. 

Conclusions 

We have shown that starting from an interferometric 
standard, atomic spacings can be determined without 
any precise knowledge of X-ray wavelengths. It is 
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Fig. 3. Rocking curves recorded with Mo K~1 radiation. The 
two Bragg angles differ by A O  "~ 30" but the full width of the 
rocking curve is only 1". Different source intensities in the 
two channels result in different peak intensities. First crystal 
Si 355, second crystal Ge 800. 
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clear that provided problems of specimen mounting 
can be overcome, the Bragg angles of any two crystals 
can be compared to about 0.1% of the width of the 
pseudo non-dispersive double-crystal rocking curve. 
Since at exact equality the rocking curves are symme- 
tric, there is no limit in principle other than that set 
by counting statistics on the precision with which 
lattice parameters can be compared. 

Finally we should point out that it is not a 'lucky 
chance' which makes these measurements possible. 
By using sufficiently high orders of Bragg reflexions 
it is inevitable that lattice-parameter matches occur in 
different materials at some accessible temperature. 

The apparatus used in these experiments was con- 
structed with a grant from the Paul Instrument fund 

which is gratefully acknowledged. One of us (J.F.C.B) 
would like to thank the Post Office for financial sup- 
port. 
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A magic-integer approach, called the P-S set method is described. A primary (P) set of reflexions 
contains some which fix the origin and enantiomorph and others expressed symbolically in magic- 
integer form. Probable phases for a secondary (S) set of reflexions are derived, also in symbolic form, 
from single triple-phase relationships containing a pair of P reflexions. Relationships which link the 
combined P and S sets give rise to the terms of a Fourier map, the peaks of which indicate likely sets 
of phases for all the reflexions under consideration. These sets of phases are used as starting points for 
the computer program MULTAN. The process is completely automated and is illustrated by the solu- 
tion of the structure of cephalotaxine, CIsH2104N, the space group of which is C2 with two molecules 
in the asymmetric unit. 

Introduction 

In a recent paper White & Woolfson (1975) described 
a technique whereby phases may be represented to a 
sufficient degree of approximation in a symbolic form 
such that a single symbol may be used to represent 
several phases. Thus for a suitable set of m integers 
- nl, n2, . . . ,nm - one may write 

~or=nrx mod (1), r =  1 to m, (1) 

where the phase angles, ¢, are expressed in cycles and 
the set of equations is approximately satisfied for some 
value of x in the range 0 < x < 1. 

Trials by White & Woolfson (1975) showed that a 
simple application of magic integers, in a way which is 
a blend of the symbolic-addition and multiple-solution 

approaches, could lead to complete and straightfor- 
ward solutions of structures which had been solved 
rather tortuously from E maps given by the MULTAN 
computer package. The extension of the magic-integer 
approach which is described in this paper is even more 
powerful and has solved a number of known test 
structures for which the automatic MULTAN proce- 
dure had failed completely. 

The P-S sets method 

In explaining the new magic-integer approach we shall 
use as an example the structure of cephalotaxine, 
C18H2104N, the form of the molecule of which is shown 
in Fig. 1. The space group is C2 with a=22.84,  b =  
8-15, c =  19.54 A and t =  117.7 °. There are two mole- 


